Fixed Encoder Self-Attention Patterns in Transformer-Based Machine Translation

Alessandro Raganato

Yves Scherrer

Jörg Tiedemann

Neural Machine Translation

• Transformer architecture (Vaswani et al. 2017)

х, А

• Encoder self-attention

• Eight attention heads in the *base* version of the Transformer

- Many of the attention heads exhibit behaviour that seems related to the structure of the sentence. The heads learned to perform different tasks. (Vaswani et al. 2017)
- Tremendous amount of works on how to interpret them

 A portion of encoder self-attention patterns learned by the Transformer architecture reflect positional encoding of contextual information (Raganato and Tiedemann, 2018; Kovaleva et al., 2019; Voita et al., 2019ab; Correia et al., 2019, etc.)

- A portion of encoder self-attention patterns learned by the Transformer architecture reflect positional encoding of contextual information (Raganato and Tiedemann, 2018; Kovaleva et al., 2019; Voita et al., 2019ab; Correia et al., 2019, etc.)
 - four different positional patterns (Raganato and Tiedemann, 2018)

A portion of encoder self-attention patterns learned by the Transformer architecture reflect positional encoding of contextual information (Raganato and Tiedemann, 2018; Kovaleva et al., 2019; Voita et al., 2019ab; Correia et al., 2019, etc.)

→ Instead of learning positional patterns, we can replace them by fixed non-learnable predefined patterns, reflecting the importance of locality, without the need of learning them!

Without requiring any learnable parameters nor external knowledge!

- We design seven intuitive and simple fixed attention patterns
 - example sentence: "a master of science fic## tion ."

• Example sentence: "a master of science fic## tion ."

Given the *i-th* word within a sentence of length *n*, we define the following patterns:

1. the current token

• Example sentence: "a master of science fic## tion ."

Given the *i-th* word within a sentence of length *n*, we define the following patterns:

- 1. the current token
- 2. the previous token

master of ficere ticere bon -

• Example sentence: "a master of science fic## tion ."

- 1. the current token
- 2. the previous token
- 3. the next token

• Example sentence: "a master of science fic## tion ."

Given the *i-th* word within a sentence of length *n*, we define the following patterns:

the current token

1.

• Example sentence: "a master of science fic## tion ."

• Example sentence: "a master of science fic## tion ."

- the current token
 the previous token
 the next token
 the larger left-hand context
 the larger right-hand context
- 6. the end of the sentence

• Example sentence: "a master of science fic## tion ."

- 1. the current token
- 2. the previous token
- 3. the next token
- 4. the larger left-hand context
- 5. the larger right-hand context
- 6. the end of the sentence
- 7. the start of the sentence

• Example sentence: "a master of science fic## tion ."

Given the *i-th* word within a sentence of length *n*, we define the following patterns:

4. the larger left-hand context: a function *f* over the positions 0 to i-2

where

$$f^{(4)}(j) = \frac{(j+1)^3}{\sum_{j=0}^{i-2} (j+1)^3}$$

 $\xi_{i,j}^{(2)} = \begin{cases} 1 & \text{if } j = i - 1\\ 0 & \text{otherwise} \end{cases}$ $\xi_{i,j}^{(4)} = \begin{cases} f^{(4)}(j) & \text{if } j \le i - 2\\ 0 & \text{otherwise} \end{cases}$

ŻÅ

• Token-based fixed attention patterns

Token-based fixed attention patterns

• *Word-based* fixed attention patterns

•

Experimental setup

- Transformer models:
 - 8L: all 8 attention heads in each layer are learnable,
 - **7Ftoken+1L**: 7 fixed token-based attention heads and 1 learnable head per encoder layer,
 - **7Fword+1L**: 7 fixed word-based attention patterns and 1 learnable head per encoder layer,
 - **1L**: a single learnable attention head per encoder layer.
- Evaluation settings:
 - High resource scenario:
 - German <-> English, 11.5M training sentences
 - Mid-size scenario:
 - German <-> English, 2.9M training sentences
 - Low-resource scenario:
 - German -> English, 159K training sentences
 - Korean -> English, 90K training sentences
 - Vietnamese <-> English, 133K training sentences

Evaluation metric:
 BLEU score

Experiments and results

- Mid-size scenario:
 - German <-> English, 2.9M training sentences

• The x-axis shows different configurations of encoder and decoder layers

Experiments and results

- Low-resource scenario:
 - German -> English, 159K training sentences
 - Korean -> English, 90K training sentences
 - Vietnamese <-> English, 133K training sentences

0		Ļ	
Ç	•)	5
	V-	7	
	Z	7	

Enc. heads	DE-EN	KO-EN	EN-VI	VI-EN
8L	30.86	6.67	29.85	26.15
7Ftoken+1L	32.95	8.43	31.05	29.16
7Fword+1L	32.56	8.70	31.15	28.90
1L	30.22	6.14	28.67	25.03
Prior work	† 33.60	† 10.37	⊎ 27.71	⊎ 26.15

Experiments and results

- High resource scenario:
 - German <-> English, 11.5M training sentences

Encoder heads	EN-DE	DE-EN
8L	26.75	34.10
7Ftoken+1L	26.52	33.50
7Fword+1L	26.92	33.17
IL	26.26	32.91

Ablation study

• We mask out one attention pattern across all encoder layers at test time

Ablation study

• We mask out one attention pattern across all encoder layers at test time

Disabled head	6+11	ayers	6+6 layers		
	EN-DE	DE-EN	EN-DE	DE-EN	
1 Current word	-0.15	0.11	0.12	-0.04	
2 Previous word	-5.72	-5.21	-3.05	-3.26	
3 Next word	-1.80	-1.98	-2.08	-1.36	
4 Prev. context	-4.73	-5.20	-1.42	-2.85	
5 Next context	-0.72	-0.34	-0.47	-0.66	
6 Start context	-0.17	-0.12	0.14	0.13	
7 End context	-0.02	0.12	-0.30	0.10	
8 Learned head	-2.22	-4.05	-0.58	-0.78	

Ablation study

• We mask out one attention pattern across all encoder layers at test time

Disabled head	6+11	ayers	6+6 layers		
	EN-DE	DE-EN	EN-DE	DE-EN	
1 Current word	-0.15	0.11	0.12	-0.04	
2 Previous word	-5.72	-5.21	-3.05	-3.26	
3 Next word	-1.80	-1.98	-2.08	-1.36	
4 Prev. context	-4.73	-5.20	-1.42	-2.85	
5 Next context	-0.72	-0.34	-0.47	-0.66	
6 Start context	-0.17	-0.12	0.14	0.13	
7 End context	-0.02	0.12	-0.30	0.10	
8 Learned head	-2.22	-4.05	-0.58	-0.78	

Disabled head	6+1	layers	6+6 layers		
	EN-VI	VI-EN	EN-VI	VI-EN	
1 Current word	0.12	-0.14	0.16	-0.05	
2 Previous word	-2.32	-2.67	-2.71	-3.04	
3 Next word	-1.12	-1.61	-1.35	-2.15	
4 Prev. context	-4.11	-4.32	-2.82	-3.09	
5 Next context	-0.27	-0.50	-0.83	-0.77	
6 Start context	-0.29	-0.08	-0.04	0	
7 End context	0.28	-0.29	-0.23	-0.19	
8 Learned head	-0.57	-0.88	-0.18	0.36	

Eight fixed heads

- **8Ftoken**: extreme scenario where the eighth attention head is fixed as well:
 - eighth attentive pattern focuses on the last token, with a fixed weight of 1.0 at position *n*

Enc. heads	#Param.	EN-DE	DE-EN	EN-VI	VI–EN
8L	91.7M	25.02	30.99	29.85	26.15
7F _{token} +1L	88.9M	24.63	30.61	31.05	29.16
8F _{token}	88.5M	24.64	30.56	31.45	28.97

Analysis:

Analysis: Sentence length

• BLEU scores for different ranges of sentence lengths

Analysis: Subject-verb agreement

- Contrastive test suite -- LingEval97 (Sennrich, 2017)
- Metric: accuracy score
- The *x*-axis shows distances between the subject and the verb.

Analysis: Word Sense Disambiguation

- Contrastive test suites on word sense disambiguation:
 - ContraWSD (Rios Gonzales et al., 2017)
 - MuCoW (Raganato et al., 2019)
- Metric: accuracy score

	Contra	aWSD	MuCoW	
Encoder heads	6+1	6+6	6+1	6+6
8L	0.804	0.831	0.741	0.761
7F _{token} +1L	0.793	0.834	0.734	0.772
7Ftoken (H8 disabled)	0.761	0.816	0.721	0.757

Conclusions

- Encoder self-attention can be simplified drastically, reducing parameter footprint at training time without degradation in translation quality
- Our extensive analyses show that:
 - only adjacent and previous token attentive patterns contribute significantly to the translation performance
 - the trainable encoder head can also be disabled without hampering translation quality if the number of decoder layers is deep enough
 - encoder attention heads based on locality patterns are beneficial in low-resource scenarios, but may affect the semantic feature extraction necessary for addressing lexical ambiguity phenomena

Thank you!