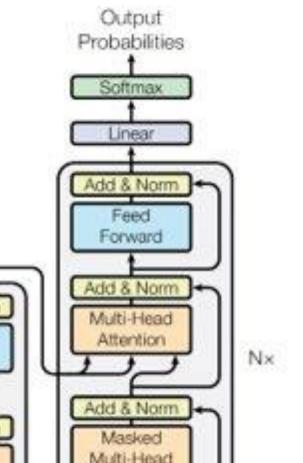
An Analysis of Encoder Representations in Transformer-Based Machine Translation

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI HUMANISTINEN TIEDEKUNTA HUMANISTISKA FAKULTETEN FACULTY OF ARTS

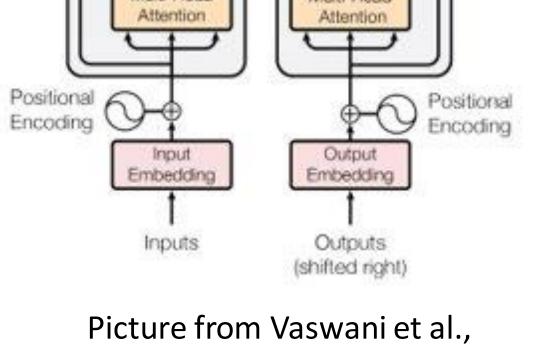
Alessandro Raganato <u>alessandro.raganato@helsinki.fi</u>


Jörg Tiedemann jorg.tiedemann@helsinki.fi

Motivation

A recent neural architecture, called Transformer (Vaswani et al., 2017), has emerged as new dominant NMT paradigm outperforming the widely used recurrent networks.

However, being a rather new architecture, little is known about what structural information the model is learning.


• What information are learned by the encoder?

Model setup

- Transformer architecture:
- base version, 6 layers, 8 attention heads, 512 dim. word embedding, etc.
- Training data:
- WMT18 News Task
- vocabulary 100K full word forms

	#Training sentences		newstest 2017	Γ
$\textbf{English} \rightarrow \textbf{Czech}$	51.391.404	$\mathbf{English} \to \mathbf{Czech}$	18.11	Γ
$\mathbf{English} \to \mathbf{German}$	25.746.259	$\mathbf{English} \to \mathbf{German}$	23.37	Γ
$\textbf{English} \rightarrow \textbf{Estonian}$	1.064.658	$\mathbf{English} \to \mathbf{Estonian}$	-	Γ
$\mathbf{English} \to \mathbf{Finnish}$	2.986.131	$\mathbf{English} \to \mathbf{Finnish}$	15.06	ſ
$\mathbf{English} \to \mathbf{Russian}$	9.140.469	$\mathbf{English} \to \mathbf{Russian}$	21.30	ľ
$\mathbf{English} \to \mathbf{Turkish}$	205.579	$\mathbf{English} \rightarrow \mathbf{Turkish}$	6.93	ľ
$\textbf{English} \rightarrow \textbf{Chinese}$	23.861.542	$\mathbf{English} \to \mathbf{Chinese}$	23.10	ſ

2017.

Forward

Methods:

Inducing Tree Structure

We used the attention weights in each layer to extract trees from the input sentences and inspect whether they reflect dependency trees.

Dataset:

English PUD treebank from the CoNLL 2017 Shared Task (Zeman et al., 2017)

Results in terms of **Unlabeled Attachment** Score.

Baseline:

upervised pproach	88.22
andom aseline	10.1
eft-branch aseline	10.39
ight-branch aseline	35.08

We evaluated the quality of the decoder on a given task to assess how discriminative the encoder representation is for that task.

- One decoder layer using one attention head and one feed-forward layer.
- Assess the quality of the encoder representation across stacked layers.

Results in terms of **precision** for each test set (\uparrow , on the left side of each cell), together with the **error rate on the sentence length** (\downarrow , on the right side of each cell).

newstest 2018

17.36

34.46

13.05

10.32

18.96

6.22

23.75

1. Part-of-Speech tagging (POS)

Probing Sequence Labeling tasks

Universal Dependencies English Web Treebank v2.0 (Zeman et al., 2017)

		$\mathbf{en} \rightarrow \mathbf{cs}$	$\mathbf{en} \rightarrow \mathbf{de}$	$\mathbf{en} \rightarrow \mathbf{et}$	$\mathbf{en} \rightarrow \mathbf{fi}$	$\mathbf{en} \rightarrow \mathbf{ru}$	$\mathbf{en} ightarrow \mathbf{tr}$	$\mathbf{en} \rightarrow \mathbf{zh}$
	layer 0	91.13 / 7.70	91.06 / 8.20	84.49 / 18.20	86.88 / 25.00	89.47 / 6.00	68.47 / 52.10	90.81 / 12.20
	layer 1	92.79/ 2.90	93.12 / 4.60	87.11 / 18.40	87.58 / 12.40	90.67 / 10.60	67.53/47.00	92.60 / 7.90
DS	layer 2	93.20 / 5.40	93.18 / 4.50	84.99 / 14.70	86.41 / 15.20	91.86 / 3.90	68.13 / 45.40	91.68 / 13.30
	layer 3	92.24 / 9.50	92.31 / 8.60	84.51 / 16.60	85.16/18.70	91.46 / 6.00	66.50/53.20	89.52 / 19.00
	layer 4	91.66 / 10.80	90.85 / 13.70	82.65/23.70	83.46 / 24.40	91.98 / 12.00	65.66 / 53.90	86.47 / 22.10
	layer 5	87.14/19.10	87.83 / 24.10	82.11/23.60	80.41/33.30	89.47 / 16.30	62.80 / 54.80	82.95/31.30
				CONTRACTOR AND A CONTRACTOR OF A			COCASAD CULLUIS STURIAS	14 200 COMPANY AND A 260 STORE OF

POS

	en->cs	en->de	en->et	en->fi	en->ru	en->tr	en->zh
	30.26	32.90	31.38	31.63	17.13	31.81	33.26
Layer 0	9.94	10.62	7.76	8.31	11.08	9.78	9.69
Lavor 1	35.08	35.94	35.07	35.30	36.05	26.20	35.77
Layer 1	10.72	10.65	10.85	10.10	10.27	11.03	9.62
Lover 2	35.46	33.76	33.16	29.43	36.08	22.56	35.80
Layer 2	10.17	9.02	7.40	9.00	7.63	9.52	10.71
Layer 3	35.20	35.59	22.62	27.24	35.03	21.53	38.87
Layer 5	8.28	9.97	7.99	7.78	9.27	7.18	9.02
Layer 4	29.66	27.88	32.87	24.00	27.68	25.40	35.40
Layer 4	10.37	10.69	9.95	9.52	10.72	11.06	11.56
Layer 5	36.02	35.32	33.68	31.87	35.56	28.23	29.73
Layer J	11.86	8.30	14.83	11.01	9.77	7.98	13.45

2. Chunking (CHUNK)

CoNLL2000 Chunking shared task (Tjong Kim Sang and Buchholz, 2000)

		$\mathbf{en} \rightarrow \mathbf{cs}$	$\mathbf{en} \rightarrow \mathbf{de}$	$en \rightarrow et$	$\mathbf{en} \rightarrow \mathbf{fi}$	$\mathbf{en} \rightarrow \mathbf{ru}$	$\mathbf{en} ightarrow \mathbf{tr}$	$\mathbf{en} \rightarrow \mathbf{zh}$
	layer 0	90.28 / 4.37	89.78 / 9.49	86.98 / 13.47	87.75 / 8.90	88.12 / 6.61	72.64 / 31.21	90.37 / 5.42
	layer 1	92.98 / 4.32	92.91 / 3.58	88.00 / 11.78	88.92 / 10.19	91.16 / 4.03	71.59 / 40.81	92.76/ 6.71
CHUNK	layer 2	93.56 / 6.56	93.92 / 3.53	88.00 / 12.28	88.65 / 13.22	91.60 / 5.82	70.25 / 37.38	93.40 / 11.18
CHICK III	layer 3	93.46 / 12.33	93.92 / 10.14	87.56 / 14.36	87.41 / 19.93	92.78 / 5.91	69.20 / 46.17	90.83 / 16.90
	layer 4	92.68 / 14.66	92.83 / 12.77	85.80/22.81	86.60 / 20.13	92.73/12.72	68.54 / 51.04	89.30 / 19.09
	layer 5	90.87 / 14.46	89.92 / 16.60	85.34/19.88	84.04 / 27.14	90.95/15.11	65.01 / 53.33	82.82/31.71

3. Named Entity Recognition (NER)

CoNLL2003 NER shared task (Tjong Kim Sang and De Meulder, 2003)

		$\mathbf{en} \rightarrow \mathbf{cs}$	$\mathbf{en} \rightarrow \mathbf{de}$	$en \rightarrow et$	$\mathbf{en} \rightarrow \mathbf{fi}$	$\mathbf{en} \rightarrow \mathbf{ru}$	$\mathbf{en} ightarrow \mathbf{tr}$	$\mathbf{en} \rightarrow \mathbf{zh}$
	layer 0	91.18/23.75	92.71 / 12.02	87.21/33.03	89.38 / 29.53	91.29 / 14.58	86.49/39.47	91.72 / 11.05
	layer 1	93.29 / 9.80	93.36/7.27	88.65 / 15.99	90.14 / 20.77	92.22 / 10.07	85.66/38.14	92.93 / 11.13
NER	layer 2	93.83 / 7.11	94.13 / 11.13	87.46/37.30	90.20 / 26.47	93.20 / 8.12	86.52/43.05	93.72 / 12.35
	layer 3	93.23 / 16.53	94.32 / 14.85	88.95 / 33.31	90.22 / 26.57	93.14 / 9.42	86.82 / 37.68	93.07 / 18.32
	layer 4	93.72 / 11.81	93.93 / 12.51	88.57 / 40.55	89.14/34.28	92.02 / 12.65	87.21 / 53.99	91.93 / 26.95
	layer 5	92.62/21.63	94.11/17.35	87.64/30.13	89.40/31.49	92.33 / 13.98	86.06/44.25	92.35 / 30.08

4. Semantic tagging (SEM)

Parallel Meaning Bank (Abzianidze et al., 2017)

	0.0	$\mathbf{en} \to \mathbf{cs}$	$\mathbf{en} \to \mathbf{de}$	$\mathbf{en} \rightarrow \mathbf{et}$	$\mathbf{en} \rightarrow \mathbf{fi}$	$en \rightarrow ru$	$\mathbf{en} \to \mathbf{tr}$	$\mathbf{en} \to \mathbf{zh}$
	layer 0	83.99 / 13.56	84.05 / 13.35	81.87 / 14.73	81.99 / 14.69	83.36 / 14.07	79.04 / 16.87	84.08 / 13.63
	layer 1	84.84 / 12.48	85.27 / 12.16	82.25 / 14.11	82.70/13.97	84.12/13.26	78.80/17.10	84.93 / 11.88
SEM	layer 2	85.17 / 11.95	85.11 / 12.16	82.28 / 14.25	82.76 / 14.85	84.09 / 13.03	78.26 / 18.09	85.40/11.74
	layer 3	85.34 / 12.02	84.77 / 11.45	82.17/14.41	82.82 / 14.00	85.21 / 12.32	79.22 / 17.28	84.79 / 11.91
	layer 4	85.29 / 11.38	85.91 / 9.93	82.44 / 14.50	83.19 / 13.77	84.26 / 12.50	78.36/19.26	85.38/11.42
	layer 5	86.27 / 11.68	85.71 / 10.78	82.27 / 14.55	82.96 / 13.84	84.56 / 11.79	78.67 / 18.78	85.98 / 10.62

Transfer Learning

We used the encoder weights from one high resource language, i.e., English-German, to train a Transformer model for a low resource language pair, English-Turkish.

Experiments:

- initializing and fine tuning the encoder weights **(TL1)**
- initializing and keeping the encoder weights fixed **(TL2)**

	newstest 2017	newstest 2018
$English \rightarrow Turkish$	6.93	6.22
English TL1 \rightarrow Turkish	8.72	7.93
English TL2 \rightarrow Turkish	7.82	6.91

Conclusion

- We find that each layer has at least one attention head that encodes a significant amount of syntactic dependencies.
- Consistent with previous findings on the sequence-to-sequence paradigm, probing the encoder to four different sequence labeling tasks reveals that lower layers tend to encode more syntactic information, whereas upper layers move towards semantic tasks.
- The information about the length of the input sentence starts to vanish after the third layer.
- The study corroborates that attention can be used to transfer knowledge between high- and low-resource languages.